
Our topic in this chapter is not so much what happens when experts have to
work “out of context,” but how cognitive engineering might help weather
forecasters, in particular, remain within familiar decision-making spaces by
improving on their display technology. Ballas (chap. 13, this volume)
makes it clear how weather forecasting, as a workplace, is a constantly mov-
ing target by virtue of continual change in displays and data types. Since
weather maps were invented around 1816, meteorological data visualiza-
tion has gone through many dramatic changes (Monmonier, 1999).
Weather maps are now displayed and manipulated by computer, even
though hand chart work is still generally regarded as a critical activity in the
forecaster’s trade (see Hoffman & Markman, 2001). Most weather forecast-
ers get data, charts, and satellite images from Internet sources including
the World Wide Web. In this chapter, we discuss some of what we know
about how weather forecasters use information technology to display and
support the interpretation of complex meteorological visualizations. Based
on notions of human-centered computing (HCC), we offer some sugges-
tions on how to improve the visualizations and tools.

Norman (1993) offered design guidance that would (hopefully) ensure
human-centeredness. Ideally, such guidance should be applied throughout
the entire design process, but this does not always happen. In the case of
weather forecasting, some of the ways of representing data (such as wind-
barbs or iso-pressure lines) were standardized long ago. Ingrained traditions
in meteorological symbology and display design force one to keep in mind
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what we call the Will Robinson principle. This principle is named after a
character in the television series Lost in Space who was continually cautioned
by his robot about impending dangers. The idea of the principle is that it is
potentially dangerous for the outsider—a researcher who is analyzing a do-
main to create new technologies—to inject changes in long-standing tradi-
tions, no matter how flawed the traditions may seem at first glance.

One of our first experiences that (eventually) spawned this principle in-
volved studies of expertise in the field of remote sensing in general (Hoff-
man, 1990; Hoffman & Conway, 1990) and a study of expertise at interpret-
ing infrared satellite imagery (Hoffman, 1997; Klein & Hoffman, 1992).
Until color was introduced, infrared weather satellite images were por-
trayed using a gray scale representing temperatures. On first thought, one
might think that cold things would be represented as black and dark gray
tones, and relatively warmer things as light tones to white. However, the
Earth seen in this tonal scale looks like a surreal marble cake, not even
much like a planet. Reversing the scale (warm = black, cold = white) sud-
denly makes the Earth look like the Earth and the clouds look like clouds.
One of the tonal scales (or “enhancement curves”) that forecasters found
valuable (and still use to map temperatures, though color has been added),
uses black to dark gray tones for the relatively warmest temperatures (i.e.,
the land surface), lighter grays for the lower and relatively warm clouds, but
then reverts back to dark gray for the relatively cooler midlevel clouds, pro-
ceeding up through the lighter gray shades to white, and then yet again
back to dark gray and black for the relatively coolest and highest cloud tops.
An example is shown in Figure 15.1.

Taken out of context as a tone-to-temperature mapping scale, it is some-
what mysterious to the outsider. But with practice comes a skill of being
able to use the repeating ascending tone scales to perceive cloud height
and thereby gain an awareness of atmospheric dynamics. (Higher cloud
tops are relatively colder and also more massive, thus representing the pres-
ence of greater amounts of moisture that can be associated with storms and
precipitation at ground levels. Note the storm cell in the lower left of Figure
15.1.) It was only after a wave of cognitive task analysis with expert forecast-
ers that the value of the enhancement curve became apparent.

With this cautionary tale in mind, the question we ask in this chapter is:
“Given the current state of weather visualizations, how can we apply psycho-
logical and human-centering principles to improve the forecasting process?”
In order to answer this question, we briefly describe two of the “design chal-
lenges” of HCC (see Endsley & Hoffman, 2002)—the Lewis and Clark Chal-
lenge and the Sacagawea Challenge, and provide examples from studies sup-
ported by the Office of Naval Research that suggest how we can apply the
notions of human centering to improve the visualizations that forecasters
use, and the forecasting process itself, to help forecasters stay “in context.”
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TWO PRINCIPLES OF HUMAN-CENTERED
COMPUTING

How should information be displayed on a computer screen? The answer
is, of course, “It depends.” What we want to focus on is the fact that the easi-
est way to display information is not necessarily the easiest way for a person
to understand the information. Presenting external information in a way
that people find meaningful is the key to what Donald Norman (1993) calls
“naturalness of representation”:

Perceptual and spatial representations are more natural and therefore to be
preferred but only if the mapping between the representation and what it
stands for is natural—analogous to the real perceptual and spatial environment
. . . the visible, surface representations should conform to the forms that peo-
ple find comfortable: names, text, drawings, meaningful naturalistic sounds,
and perceptually based representations. The problem is that it is easiest to pres-
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FIG. 15.1. A representative image generated by applying the “MB enhance-
ment curve” to infra-red radiometric data sensed by GOES (Geostationary
Operational Environmental Satellite) of the National Oceanographic and
Atmospheric Administration. The upper gray scale in the legend at the bot-
tom maps temperatures onto a continuous tonal palette. The bottom gray
scale is the enhancement curve. The upper right corner appears cropped
but is the apparent temperature of space, coded as white (i.e., cold).



ent people with the same representations used by the machines: numbers. This
is not the way it ought to be. Sure, let the machines use numbers internally, but
present the human operators with information in the format most appropriate
to their needs and to the task they must perform. (pp. 72, 226)

It is a strong claim indeed that displays should use representations that
match the user’s mental representations, and it by no means clear that Nor-
man’s (1993) sweeping generalization is the right way to go. The simplest
case, the case lying at the heart of Norman’s treatment of this issue, is to
present information graphically if people understand it visually or in the
form of mental imagery, rather than presenting tables showing the num-
bers that computers so adeptly process. But beyond this simplest case is a
large murky zone in which one cannot always be certain how the human
mind represents things, or how weather displays should somehow align
with mental representations. A case in point might be the example given
earlier, of the tonal enhancement curves for satellite imagery. As Endsley
and Hoffman (2002) point out, the core notion for which Norman is reach-
ing seems to be that displays need to present meanings, and do so in a way
that is directly perceptible and comprehensible.

But ease, directness, and psychological reality are differing meanings of
“natural.” What we might call immediately interpretable displays might, but
need not necessarily, present information in the same way it is represented
in the human mind or manifested in the “real world.” On the contrary, dis-
plays of data from measurements made by individual sensors may be com-
putationally integrated into goal-relevant higher order dynamic invariants
or compound variables.

A good example from meteorology is the “skew-T, log p” diagram. This
diagram uses a clever trick—measuring elevation or height in terms of pres-
sure. This makes the y-axis rather like a rubber ruler. When a mass of air has
relatively high pressure, the ruler is scrunched; and when a mass of air has
relatively low pressure, the ruler is stretched. Temperature is the x-axis, and
the interpretation of the diagram involves looking for patterns that appear
as changes in temperature (skews) as a function of height in the atmo-
sphere as measured in terms of pressure (“geopotential height”). To those
who are unfamiliar with the skew-T diagram, its appearance and interpreta-
tion are a mystery. To those who are familiar with it, the diagram provides
immediately perceptible clues to atmospheric dynamics.

Stimulated by Norman’s guidance, Endsley and Hoffman (2002) offered
two related principles of HCC. One is the Sacagawea Challenge, named af-
ter the guide for the Lewis and Clark Expedition:

Human-centered computational tools need to support active organization of
information, active search for information, active exploration of information,
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reflection on the meaning of information, and evaluation and choice among
action sequence alternatives.

The Lewis and Clark Challenge states that:

The human user of the guidance needs to be shown the guidance in a way
that is organized in terms of their major goals. Information needed for each
particular goal should be shown in a meaningful form, and should allow the
human to directly comprehend the major decisions associated with each goal.

Before we discuss the application of these design challenges to meteorolog-
ical visualization, we need to present a primer about forecasting. (For a dis-
cussion of the human factors in general remote sensing, see Hoffman,
1990; Hoffman & Conway, 1990; Hoffman & Markman, 2001.)

WEATHER-FORECASTING TOOLS
AND TECHNOLOGIES

In a nutshell, the forecaster’s job is to use weather data (observations, ra-
dar, satellite, etc.) and the outputs of the many weather-forecasting com-
puter models to make accurate products, including forecasts, guidance for
aviation, flood warnings, and so on. Observational data available to the
forecaster include ground-based observations from specialized sensor
suites located at airports and forecasting facilities (winds, precipitation, air
pressure, etc.). Data are also provided by balloon-borne sensors that are
launched from weather-forecasting facilities.

The computer models for weather forecasting rely on both the statistics
of climate and physical models of atmospheric dynamics to go from current
observational data (which are used to “initialize” the physical models) to
guidance about what the atmospheric dynamics will be at a number of
scales of both space and future time. The computer models make forecasts
only in a limited sense. No one can be a really good weather forecaster by
relying on the computer model outputs unless she or he can forecast the
weather without using the computer model outputs. The computer models
are not infallible. Indeed, they are often “supervised” (that is, tweaked; see
Ballas, chap. 13, this volume). The data used for initialization may not be as
timely or reliable as the forecaster might like. The different computer mod-
els (based on different subsets of physics) often make different weather pre-
dictions and all have certain tendencies or biases (e.g., a model may tend to
overpredict the depth of low-pressure centers that form over the eastern
U.S. coastline after “skipping over” the Appalachian mountains). This has
led to the creation of “ensemble forecasts” that integrate the outputs from a
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number of the individual computer models. On the one hand, this adds to
the forecaster’s toolkit, but on the other, it adds to the data overload prob-
lem.

Satellite images show both past and recent truth and provide the fore-
caster with the “big picture” of dynamics at a global scale. There are numer-
ous types of satellite data from many platforms including GOES, SEASAT,
and others. The image products portray a variety of data types, including
visible, infrared, water vapor, and so forth. Radar, especially from the re-
markable NEXRAD system, provides the forecaster with a great deal of in-
formation, including winds, precipitation, and so on. The NEXRAD is
linked into offices of the National Weather Service, where forecasters can
request any of a great variety of products from the radar products generator
(velocity data, reflectivity, precipitable water, etc.).

New software tools allow the forecaster to combine data types into single
displays. For instance, a map showing “significant weather events ” (e.g.,
storms) may have overlaid on it the data from the national lightning-
detection network. An image from the GOES satellite may have overlaid on
it the data from the NEXRAD radar, and so on.

As one might surmise from this brief presentation, the typical weather-
forecasting facility centers around work areas populated by upwards of a
dozen workstations displaying various data types. Staff includes forecasters
responsible for general forecasting operations but also forecasters responsi-
ble for hydrometeorology and for aviation. At any one, time a forecaster
might decide to examine any of scores of different displays or data sets
(Hoffman, 1991; Trafton, Marshall, Mintz, & Trickett, 2002). Despite the
recent introduction of all the new software and hardware systems, the typi-
cal weather-forecasting facility still finds need for such things as chart ta-
bles, clipboards, and colored markers. It is by no means clear whether, how,
and to what degree any of the technologies either supports or handicaps
the forecasting process. One might therefore legitimately ask whether the
forecasting facilities might benefit from the application of the notions of
HCC.

APPLYING THE PRINCIPLES

When a system is designed, how are the types of displays or interfaces cho-
sen? Frequently, decisions are based on what is easiest or most efficient
from a programming point of view with little regard to people actually per-
form the task. The Lewis and Clark Challenge and the Sacagawea Chal-
lenge suggest that the goals and mental operations of the human are criti-
cal to the success of the computational tools or displays. After determining
the human’s reasoning, the designer can try to determine how well (or
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poorly) an interface supports (or prevents) it. The designer can then
change or even completely redesign the interface to facilitate both fre-
quent and difficult mental operations, and then engage in an empirical us-
ability evaluation.

A necessary and often difficult part of this task, of course, is revealing
and describing the forecaster’s reasoning. There are many methods of cog-
nitive task analysis including methods for modeling cognition at the
microscale of the reaction times and sequences of individual mental opera-
tions (e.g., GOMS). There are several tutorials available for conducting
cognitive task analysis (e.g., Crandall, Klein, & Hoffman, 2006; Hoffman &
Lintern, 2006; Schraagen, Chipman, & Shalin, 2000; Trafton et al., 2002;
Vicente, 2000). There are also ways of revealing the perceptual steps a user
goes through (e.g., with an eye tracker) in conducting particular tasks.
Forecasting also has to be described at a macrocognitive level of high-level
strategies and the drive to comprehend of what’s going on in the atmo-
sphere. One thing that makes weather forecasting a challenging domain
for HCC analysis is that there is no one single model of how forecasters rea-
son. Reasoning methods and strategies depend on climate, season, experi-
ence level, and a host of other factors. (A detailed discussion appears in
Hoffman, Trafton, & Roebber, 2006.)

The studies we now discuss examined how experienced meteorologists
understand the weather and create a weather forecast. The forecasters used
a variety of computer tools including internet sources, meteorology-specific
tools, and off-the-shelf tools such as Microsoft PowerPoint. They also com-
municated with other to make sure their forecast and understanding of the
current weather conditions was correct.

How might we apply the Sacagawea Challenge to weather forecasting?
Norman’s (1993) guidance, which we have already qualified previously,
suggests that weather-forecasting displays that show graphics (images,
charts) would already be “natural,” and those that depict quantitative infor-
mation would be “not-natural.” Here we see how Norman’s distinction is of
little help, because weather charts are anything but “natural” and because
forecasters need to know quantitative values (e.g., wind speeds at a height
of 700 millibars) and must have some idea of specific likelihoods, certainly
by the time they finish a forecast. For example, a forecaster may predict that
there will be a 30% chance of rain tomorrow in a given region over a given
time period, or the maximum temperature will be 14ºC. Because these
types of numbers are frequently a part of the final product for the fore-
caster (after a great deal of work), it seems necessary that the tools used to
make forecasts would show or contain a great deal of quantitative informa-
tion. Indeed, some forecasting tools are built to help the forecaster find the
“best” computer model and then extract specific numeric information
from that model.
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But forecasters do not reason solely, or even primarily, with numbers as
they try to understand and predict the weather. Forecasters glean large
amounts of information from many weather visualizations and then com-
bine that information inside their heads. An experienced weather fore-
caster (the type we are concerned with in this chapter) is able to create a
mental model of the current atmospheric dynamics and project the likely
future weather (Lowe, 1994; Perby, 1989; Trafton et al., 2000). The mental
model has a significant qualitative aspect manifested as imagery, but is also
“driven” by an understanding of the principles of atmospheric dynamics.
Some forecasters, those who grew up on the traditional technology of hand
chart work, report that their mental images are like animated charts popu-
lated with such graphic elements as isolines and wind barbs. Others report
visualization of air masses and air mass interactions. Indeed, the notion of a
mental model has for some time been quite familiar to the meteorology
community (see Chisholm, Jackson, Niedzielski, Schechter, & Ivaldi, 1983;
Doswell & Maddox, 1986) because they have to distinguish forecaster un-
derstanding (“conceptual models”) from the outputs of the computer mod-
els.

The role of mental models has been demonstrated in a series of innova-
tive experiments by Ric Lowe of Curtin University, investigating how nov-
ices and experts perceive and conceptualize the sets of meteorological
markings that comprise weather charts. In Lowe’s research, college student
participants and weather experts carried out various tasks that required
them to physically manipulate or generate markings from a given weather
map. In a task in which people had to group map elements and explain the
groupings, meteorologists’ groupings involved the division of the map into
a northern chunk and a southern chunk, which corresponds with the quite
different meteorological influences that operate for these two halves of the
Australian continent. Next, weather map markings were organized accord-
ing to large-scale patterns that corresponded to the location of zones of re-
gional meteorological significance. In contrast, the novices’ groupings di-
vided the map into eastern and western chunks on the basis of groups of
figurally similar elements that happened to be in close proximity. Such sub-
division has no real meteorological foundation.

In another task, participants were shown a map with an extended and
unfilled perimeter, and had to attempt to extend the markings in the map.
As well as producing significantly fewer markings in the extended region,
the novices’ markings appeared to have been derived quite directly from
the graphic characteristics of the existing original markings by extrapola-
tion or interpolation (e.g., turning simple curves into closed figures, con-
tinuation of existing patterns). In contrast, the meteorologists were operat-
ing in accordance with superordinate constraints involving a variety of
external relations that integrated the original map area with the wider me-
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teorological context. The resulting patterns in markings suggested the pro-
gressive clustering of lower level weather map elements into high-level com-
posite structures that correspond to meteorologically significant features
and systems of wider spatio-temporal significance.

In the task involving copying weather maps, the meteorologists began by
drawing the major meteorological features. The second stage was then to
pass through the map again in order to fill in subsidiary elements around
this framework. In contrast, the novices tended to make a continuous pass
around the map, filling in all elements they could remember in each region
as they progressed, influenced primarily by the figural similarity of ele-
ments and their spatial proximity.

An especially interesting finding from a task involving the recall of maps
was that the meteorologists’ recall of the number of barbs on a frontal line
was actually worse than that of the novices. This was because the meteorolo-
gists were concerned with the meteorologically important aspect of the
cold-front symbol (the cold-front line itself) while glossing over the more
“optional” aspect of the symbol (the particular number of barbs on the
line).

In another task, participants attempted to predict future weather on the
basis of what was shown in a map. For the nonmeteorologists, markings on
the forecast maps could be largely accounted for as the results of simple
graphic manipulations of the original markings; that is, they tended to
move markings en masse from west to east without regard to meteorological
dynamics. In contrast, the meteorologists’ predictions showed a much
greater differentiation in the way the various markings on the map were
treated. Rather than moving markings en masse, new markings were added.
This shows that meteorologists’ mental representation of a weather map ex-
tends into the surrounding meteorological context.

In general, novices construct limited mental models that are insuffi-
ciently constrained, lack a principled hierarchical structure, and provide an
ineffective basis for interpretation or memory. A major weakness of their
mental models was the apparent lack of information available regarding
the dynamics of weather systems. To quote Lowe (2000), “The expert’s
mental model would be of a particular meteorological situation in the real
world, not merely a snapshot or image of a set of graphic elements ar-
ranged on a page” (pp. 187–188).

The consistent pattern of findings suggested a training intervention
based on a new display of weather chart data. Animations were developed
that portrayed temporal changes that occur across a sequence of weather
maps, the idea being that animations would empower novices to develop
richer mental models that would include or provide necessary dynamic in-
formation. But when novices worked with the animations, Lowe (2000) got
a surprise:
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Animated material itself introduces perceptual and cognitive processing fac-
tors that may actually work against the development of a high quality mental
model. . . . When the information extracted by novices was examined, it was
found that they were highly selective in their approach, tending to extract ma-
terial that was perceptually conspicuous, rather than thematically relevant to
the domain of meteorology. . . . [For example] for highly mobile features
such as high pressure cells, trajectory information was extracted while infor-
mation about internal changes to the form of the feature tended to be lack-
ing. There is clearly more research required to tease out the complexities in-
volved in addressing ways to help meteorological novices become more adept
at weather map interpretation. In particular, we need to know more about the
ways in which they interact with both static and dynamic displays. (p. 205)

This finding captures the motivation for the research that we report in this
chapter.

A sample display that forecasters use is shown in Figure 15.2. This shows
700-millibar heights, winds, and temperatures, and involves both a graphi-
cal (i.e., map) format and individual data points (i.e., color-coded wind
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FIG. 15.2. A typical visualization that meteorologists use. Wind speed and
wind direction are shown by the wind barbs; temperature is color coded ac-
cording to the legend on the upper right, and equal pressure is connected by
the lines (isobars) connecting the same values. The actual displays rely
heavily on color, which we could not reproduce here.



barbs). Meteorological charts of this kind present a selective and somewhat
decontextualized view of the atmosphere, and depict some information
that is beyond direct or everyday experience. For instance, many weather
charts show fronts, which are boundaries between air masses projected
onto the Earth’s surface. In actuality, air mass boundaries have complex
shapes as a function of geopotential height (e.g., they are intersecting and
interacting “blobs” of air). “Fronts” are hypotheticals. At higher levels in
the atmosphere, meteorologists refer to “troughs,” “ridges,” and “domes”:

In weather maps these are indicated not by isolated graphical features but
rather by patterning. . . . Minor local convolutions that are echoed across a se-
ries of adjacent isobars indicate the presence of a meteorologically significant
feature. However, this subtle patterning of isobars can be obscured to a large
extent by their visually distracting context, and so these features are likely to
be overlooked unless given special attention. (Lowe, 2000, p. 189)

Hoffman (1991) and Trafton et al. (2000) have affirmed Lowe’s (2000)
findings: Expert forecasters do more than simply read off information from
the charts or computer model outputs; they go through a process. They be-
gin by forming an idea of the “big picture” of atmospheric dynamics, often
by perceiving primarily qualitative information (e.g., “The wind is fast over
San Diego” or “This low seems smaller than I thought it would be”); they
continuously refine their mental model; and they rely heavily on their men-
tal model to generate a forecast including numeric values (e.g., “The wind
speed over San Diego at 500 mb will be 42 knots”). Experienced meteorolo-
gists use their mental model as their primary source of information (rather
than copying data directly from the best or a favorite visualization or com-
puter model output). Thus, simply showing a complex visualization, ex-
pecting a user to extract the necessary information, and to be finished is an
oversimplification of how complex visualizations are used. Figure 15.3
shows a macrocognitive model of the forecaster reasoning process.

VISUALIZATION SUGGESTIONS

In the case of weather forecasting, the application of the Lewis and Clark
Challenge and the Sacagawea Challenge is a bit tricky because forecasters
must see quantitative information, but they also reason on the basis of qual-
itative information and their mental models. Thus, the best kind of exter-
nal representation might be one that emphasizes the qualitative aspects of
the data, but where quantitative information can also be immediately per-
ceived. One good example of this is the wind-barb glyph, shown in Figure
15.2. A wind barb shows both wind speed (by the number and length of the
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barbs) and direction (by the direction of the major line). Though collaps-
ing information in a way that might be regarded as efficient, this comes at a
cost of legibility and display clutter. On the other hand, because individual
wind barbs tend to cluster in ways suggestive of atmospheric dynamics (see
the swirl patterns in the upper left and lower middle of Figure 15.2), the
display allows the forecaster to see the qualitative aspects of the wind (areas
of increasing wind speed, the formation of lows, cyclonic winds, etc.). A
wind barb has the added benefit of allowing a forecaster to extract quantita-
tive information from the glyph (e.g., each long barb is 10 knots; each short
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FIG. 15.3. A macrocognitive model of how expert weather forecasters pre-
dict the weather (based on Trafton et al., 2000). This diagram includes all of
the fundamental reasoning processes that experts engage in: recognition-
primed decision making, the action plan refinement cycle, the situation
awareness cycle, and mental-model formation and refinement. In the course
of cycling through multiple cycles of situation awareness and mental-model
refinement, the forecaster will iterate between making products and gather-
ing data.



barb is 5 knots). Creating additional iconic representations that are primar-
ily qualitative but allow quantitative information to be easily extracted from
them should enhance visualization comprehension and usage.

What kinds of mental operations do weather forecasters use when pre-
dicting the weather and when working with these complex visualizations?
Referring to Figure 15.3, we already know that they can make decisions by
recognition priming. That is, weather data are perceived, and on the basis
of experience, the forecaster knows immediately what the weather situation
is and what actions need to be taken. We also know that forecasters rely on
their mental models to formulate and test hypotheses and maintain a state
of situational awareness. But what other kinds of mental operations are per-
formed? To examine this issue, we developed a framework called spatial
transformations.

A spatial transformation occurs when a spatial object is transformed
from one mental state or location into another mental state or location.
Spatial transformations occur in a mental representation that is an ana-
logue of physical space and are frequently part of a problem-solving pro-
cess. Furthermore, they can be performed purely mentally (e.g., purely
within spatial working memory or a mental image) or “on top of” an exist-
ing visualization (e.g., a computer-generated image). Spatial transforma-
tions may be used in all types of visual-spatial tasks, and thus represent a
general problem-solving strategy in this area.

There are many types of spatial transformations: creating a mental im-
age, modifying that mental image by adding or deleting features, mental ro-
tation (Shepard & Metzler, 1971), mentally moving an object, animating a
static image (Bogacz & Trafton, 2005; Hegarty, 1992), making comparisons
between different views (Kosslyn, Sukel, & Bly, 1999; Trafton, Trickett, &
Mintz, 2005), and any other mental operation that transforms a spatial ob-
ject from one state or location into another.

Because the mental models that meteorologists use to reason about the
weather are dynamic and have a strong spatial component, it is not surpris-
ing that many spatial transformations are applied while making a forecast.
We examined the type and amount of spatial transformations as expert sci-
entists analyzed their data. We found that by far the most common spatial
transformation is a comparison: Experts frequently compared and con-
trasted two different visualizations or compared their qualitative mental
model to a visualization (Trafton et al., 2005; see also chap. 14, this vol-
ume). In fact, when the scientists used complex scientific visualizations,
they performed almost twice as many comparisons as all the other spatial
transformations combined. Similarly, each data field or visualization they
examined was compared to others, up to four comparisons per visualiza-
tion. This shows that comparisons are frequent, suggesting that they are ex-
tremely important to the forecasting process itself. Table 15.1 shows sam-
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ples of what different forecasters said as they were viewing different meteo-
rological visualizations and making comparisons. Notice the very frequent
comparisons both between and within displays that are made by the fore-
caster.

SUPPORT FOR MENTAL-MODEL FORMATION
AND REFINEMENT

Having identified the mental model as a linchpin phenomenon in fore-
caster reasoning, it seems clear that what might be of use to forecasters
would be a graphical tool that supports them in constructing a depiction of
their four-dimensional mental model (see Hoffman, Detweiler, Lipton, &
Conway, 1993). It is certainly within the reach of computer science and arti-
ficial intelligence to build a tool that might support the forecaster, for in-
stance, in defining objects or regions within satellite images, radar, or other
data types, grabbing them as graphic objects, dragging them onto a win-
dow, progressively building up a dynamic or runnable simulacrum of their
understanding of atmospheric dynamics—a sketchpad to represent their
mental model and spatio-temporal projections from it. Current weather in-
formation-processing workstations do not support such an activity.

Having identified the most common spatial transformation, we could
also build systems that support the comparison process. Unfortunately,
other than an overlay capability there is very little support for forecasters
making comparisons between different weather models or to determine
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TABLE 15.1
Sample Comparisons That Forecasters Made

While Examining Meteorological Displays

Utterance by Forecaster

Location of the low, pretty similar to what, uh, NOGAPS has.
AVN at first guess looks like it has a better handle on the weather than NOGAPS.
I can’t believe that radar shows precipitation, but I can’t really see anything on the satel-

lite picture.
Fleet numeric COAMPS seem to have a better handle on it than what I’ve seen based on

the 27 kilometer.
18Z (18 Zulu or GMT time) still has a lot of moisture over the area. [At 21Z] there is not

a whole lot of precipitation, and then, 00Z has a lot of moisture over the area just off
the coast.

And uh, Doppler radar currently showing the precipitation a little bit closer [than I ex-
pected].

[This visualization] has a little bit more precipitation than No Gaps [or] AVN.

Note. NOGAPS, COAMPS, and AVN are computer-forecasting models.



how well a weather model matches to a satellite image. Because compari-
sons are such a vital part of the forecasting process, it makes sense to sup-
port them. Specifically, there should be ways of providing forecasters with
simpler ways of comparing weather models, and comparing weather mod-
els to satellite images, radar, and so forth.

With regard to both of these suggestions, there is a host of theoretical
and practical research issues in the cognitive science of weather forecasting
that have not yet been addressed. For example, when is it best to provide
side-by-side visualizations and when is it best to provide intelligent overlays?
If overlaid, how should transparency be handled? One of the difficult tech-
nical issues includes time syncing and geo-referencing the visualizations
with each other so that comparisons are facilitated; it won’t help the fore-
caster if she or he has to mentally animate one visualization to get it in sync
with the other.

SUPPORT FOR THE INTERPRETATION
OF QUANTITATIVE DATA

The previous section examined the spatial and reasoning processes in
which forecasters engage. This section examines the perceptual processes
that forecasters use to comprehend a weather visualization and extract in-
formation from it.

Most of the visualizations that forecasters examine have many variables
that are used to represent upwards of tens of thousands of data points (see
Hoffman, 1991, 1997). One obvious question for the designer is how to rep-
resent such an amount of data in a single visualization. There are several
standard ways of accomplishing this task: color-coding variables (such as
temperature), using various forms of isolines (isotachs, isobars, isotherms,
etc.), and using glyphs that can combine information (as do wind barbs).
All these can be used to “compress” data. However, some of these graphical
tricks force the forecaster to ferret out the needed information from the
mass of data. For example, one might have to interpolate between isobars
or compare colors at different locations to determine which area is warmer.
Such operations have to be deliberative, and can be effortful even for expe-
rienced forecasters. If we understood how forecasters perceive meaning
from these types of displays, we might be able to build better ones.

Trafton et al. (2002) examined experienced forecasters’ eye movements
as they inspected meteorological visualizations. They found that interpolat-
ing between isobars was about twice as difficult as reading information di-
rectly off of a data chart. In the same study, they examined how forecasters
extracted information by relying on legends. Extracting information from a
legend can be difficult for several reasons, some cognitive, some percep-
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tual, and some dealing primarily with the interface itself. First, the legend
itself may be small or otherwise hard to find (see the temperature legend in
the upper right of Figure 15.2). Second, the colors can be difficult to differ-
entiate. Third, meteorological visualizations still tend to rely on color pal-
ettes consisting solely of highly saturated primary hues. (There are a num-
ber of lingering issues of the use of color in meteorological displays. See
Hoffman et al., 1993.) Fourth, sometimes the legend is not labeled, making
it unclear which of several possible variables it refers to. These factors can
make finding the right match of color-to data value quite difficult.

These difficulties can manifest themselves in a variety of ways. For exam-
ple, forecasters may examine different legends (if there is more than one
on a visualization) or miss-guess what a legend refers to if a legend is not la-
beled. A forecaster may also spend an inordinate amount of time searching
for the exact color if the colors are not differentiated well. Using the
method of eye tracking, Trafton et al. (2002) found evidence that forecast-
ers do all of these things when a legend is not well defined, labeled, or col-
ored.

Trafton et al. (2002) presented experienced forecasters visualizations
such as that in Figure 15.4. These visualizations all came from a forecasting
Web site that was familiar to the forecasters. The researchers asked forecast-
ers to extract specific information from these graphs while their eye move-
ments were recorded with an eye tracker. The eye tracker allowed us to re-
cord exactly what they were looking at with a temporal resolution of 4
milliseconds. Figure 15.4 shows the relatively large amount of time and
number of eye movements (saccades) one forecaster used when trying to
determine what the temperature was in Pittsburgh. This back-and-forth eye
movement pattern is representative of how forecasters read the legend. It
shows that it took a while for the forecaster to find the right color that
matched the color at Pittsburgh. Of course, these eye movements are quite
fast, but over many visualizations, the time and effort invested in perform-
ing color interpretation can become substantial.

Similarly, Figure 15.5 shows a less skilled forecaster trying to figure out
what the legend is showing: relative humidity or geopotential height. No-
tice that because the legend is unlabeled, the forecaster searches all the text
in the display in the hope of determining what the legend represents. This
forecaster may not have had a great deal of familiarity with this visualiza-
tion, but even if she or he had, a simple label would have simplified the
forecaster’s search.

If we apply the Lewis and Clark Challenge and the Sacagawea Challenge
to legend design, we can make some suggestions that should improve the
readability of these visualizations. First, even experienced graph readers
have problems color matching on legends. Most weather visualizations do
not show an extremely wide range in temperature, so colors could be sepa-
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rated more within the legend. There may still be color match problems, but
the color match should be between red and blue rather than between or-
ange-red and red-orange (see Hoffman et al., 1993). Second, we can label
each legend. This is perhaps an obvious point, but it is one that even high-
traffic Web sites sometimes ignore. Many newspapers, magazines, and even
scientific journals do not enforce this rule. By understanding the kinds of
processes that people engage in to extract information from a visualization
(color matching, search of unknown information), we can attempt to pre-
vent or ameliorate many of these problems and improve the visualizations.

An excellent example of the role that human-centering considerations
can play in display design is the recent work of Lloyd Treinish and Bernice
Rogowitz at IBM (e.g., Rogowitz & Treinish, 1996; Treinish, 1994; Treinish
& Rothfusz, 1997). They have created a rule-based advisory tool for the
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FIG. 15.4. An example visualization that was used in the study of the eye
movements of weather forecasters. The forecaster was asked, “What is the
temperature at Pittsburgh, Pennsylvania?” The colored lines that one can see
going between the legend and the map show the eye movement tracks. The
dots are 4 milliseconds apart and the changes in eye track color represent ev-
ery 2 seconds, starting at Pittsburgh (obscured by the large eye-tracking trace
blob). We show only some of this forecaster’s eye movements for clarity.



specification of appropriate color-to-data mappings depending on whether
the goal of visualization is exploration or presentation. In addition, they
have relied on a human-centered strategy for visualization based on the
need to preserve the fidelity of the original data, and the need to take into
account known facts about human perception and cognition. Specifically,
they have developed guidelines for how to collapse multiple variables and
data types into individual displays and guidelines to support the user in de-
fining coordinate systems onto which data may registered in space and
time. One of their perspectival displays portrays horizontal winds (using a
color palette of saturation shades of violet), relative humidity (using satura-
tion shades of brown), surface temperature overlaid on the base map (us-
ing a two-tone palette of saturation shades of blue and green-blue), and air
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FIG. 15.5. Eye movement tracks for a forecaster attempting to answer the
question, “What is the relative humidity at Honolulu?” The legend in the up-
per right-hand corner shows humidity, but because it is unlabeled, the fore-
caster searches the text and the axes to attempt to determine whether it is
the isolines (solid black lines) or the legend that refers to the relative humid-
ity.



pressure (indicated in a semi-transparent vertical plane using saturation
shades of blue-violet and green). Also depicted are three-dimensional
cloud structures. For all of their graphic products, the use of perspective,
depth pseudoplanes, and animation permits the perceptual discrimination
of the multiple variables. (Images can be viewed at http://www.research
.ibm.com/people/l/lloydt/).

CONCLUSION

In one project in which one of us was involved, the sponsor wanted to cre-
ate displays to enable nonforecasters to understand the uncertainty of vari-
ous types of weather data. The researchers who worked at the sponsor’s lab-
oratory assumed that these nonforecaster users would benefit by seeing the
same sorts of displays that forecasters use to display data uncertainty. We
knew intuitively that this might not be the best way to approach the issue.
“Meaning” is always relative to the person who is doing the comprehend-
ing. Yet, it seems too easy for people, including smart, well-intentioned peo-
ple, to create systems and displays that force people to work out of context.
The road to user-hostile systems is paved with user-centered intentions (Woods &
Dekker, 2001).

How might we go about improving the forecasting process, and in partic-
ular, helping forecasters stay “in context” by creating better displays? Re-
search on the cognition of expert forecasters, compared with novices, has
revealed a great deal of useful knowledge concerning the forecasting pro-
cess and what is required for forecasting expertise. This knowledge can be
leveraged in the application human-centering principles. We have dis-
cussed two principles of HCC, and have suggested how they might be used
to improve existing meteorological products and systems. There is also a
need for innovation and revolutionary redesign, especially in the creation
of systems that support the forecaster in creating a graphical depiction of
their own mental models of atmospheric dynamics.
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